SPATIAL FIBER VOLUME FRACTION QUANTIFICATION OF CORE-SHELL STRUCTURED THERMOSET TOW-PREGS

Introduction

Deng et al. [1] have demonstrated the selfsupporting capabilities of a rapid interlayer curing continuous carbon fiber-reinforced assisted thermoset additive manufacturing process. A cartoon of the process is illustrated in Figure 1.

Figure 1: Schematic illustrating the impregnation and dual-cure resin coating process for continuous carbon fiber additive manufacture. UV resin and epoxy are admixed in the dual-cure resin bath. The tow-preg coating is partially cured by UV LEDs prior to compaction.

Tow-preg stages of interest are:

- Stage I: epoxy impregnated
- Stage II: surplus resin removed (metered)
- Stage III: consolidated dual-cure coated

Objectives

- Linearly replicate the printing process for controlled impregnation, coating and simplified sample extraction
- Quantify effect of pre-tension and metering orifice thickness on fiber volume fraction at stages I and II by cross-sectional microscopy image processing
- Qualitatively inspect the UV coating uniformity at stage III by cross-sectional microscopy image processing

Maximilian Pitto, (Ph.D.M.E.)³, Shaharear Md. Emtiaz, (Ph.D.M.E.)², Prof. Suresh G. Advani^{1,2} University of Delaware I Center for Composite Materials¹ I Department of Mechanical Engineering² University of Auckland, Department of Mechanical and Mechatronics Engineering³

Experimental setup

Figure 2 depicts a linear replica of the additive manufacturing process in Figure 1. This setup enabled precise sample extraction at each process stage.

Figure 2: CAD drawing of the experimental setup. The linear process actuated by a constant-speed motor enabled precise sample extraction between process stages. Details A-A and B-B illustrate the impregnator and metering device, respectively.

Image processing workflow

The fiber cross-section analysis workflow by MATLAB image processing is depicted in Figure 3.

Figure 3: Spatial quantification of the fiber volume fraction by MATLAB image processing. The images were binarized and discretized, followed by outline detection and classification.

Discretization sensitivity

The tow cross-section was divided into 75, 675, 1200, and 1875 cells. The fiber volume fraction (v_f) sensitivity to discretization is seen in Figure 4. The mean v_f changed by 0.6% between the two finest meshes. Subsequent results utilize the 1200 grid.

Figure 4: Fiber volume fraction histogram for four discretization densities. With decreasing cell size the distribution flattens but the mean remains steady.

Stage I – Pre-tension

Pre-tension had a negligible affect on the fiber distribution (Figure 5 a-c). However, the void content in 5 mm \times 15 mm specimens measured by micro computed tomography reduced with increasing tension (Figure 5 c).

Figure 5: (a-c) Cross-section fiber volume fraction contour plots and (d) void content measured by mCT at stage I for three pretensions applied at the fiber bobbin.

Stage II – Metering orifice thickness

A high and homogeneous fiber volume fraction was attained by metering with an orifice thickness of 120 μ m (Figure 6 and 7).

Figure 6: Tow cross-section fiber volume fraction contour plots at stage II with no pre-tension for a metering thickness of 120 and 180 μ m, respectively.

Figure 7: Fiber volume fraction histogram of the epoxy impregnated tow at stage II. A metering orifice thickness above 120 μ m produced resin rich defects seen by the counts in 0-0.1 bins.

Stage III – UV resin coating variability

Figure 8: Tow cross-section fiber volume fraction contour plots at stage III with no pre-tension for an epoxy and UV resin metering thickness of 120 and 240 μ m, respectively.

Conclusions

Stage II metering with a 120 μ m gap uniformly and tightly packed the tow ($v_f = 0.30 \pm 0.02$)

Stage III metering through a 240 μ m orifice did not produce a uniform thickness

Future Work

Improve stage III quality by reducing the orifice thickness. If ineffective, implement roll coating

Representative global fiber volume fraction and void content will be measured by ASTM D3171 - 22 and D2734, respectively

Acknowledgements

This work is supported by the U.S. Advanced Research Projects Agency-Energy (ARPA-E) under the OPEN 2021 with program award number DE-AR0001576

References

UV resin coating followed by metering through a 240 μ m orifice produced variable samples. The second specimen in Figure 8 had a uniform thickness because it picked up UV resin exceeding the orifice thickness. Specimens 1 and 3 were thinner than the orifice.

[1] Deng, Kaiyue, et al. "Core-shell structured tow-pregs enabled additive manufacturing of continuously reinforced thermoset composites." (2024)